If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9(t^2+7t-60)=0
We multiply parentheses
4.9t^2+34.3t-294=0
a = 4.9; b = 34.3; c = -294;
Δ = b2-4ac
Δ = 34.32-4·4.9·(-294)
Δ = 6938.89
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34.3)-\sqrt{6938.89}}{2*4.9}=\frac{-34.3-\sqrt{6938.89}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34.3)+\sqrt{6938.89}}{2*4.9}=\frac{-34.3+\sqrt{6938.89}}{9.8} $
| 15x-12-6x=19x+2 | | 4x—20=21 | | 4x—20=2@ | | -6n1-5=1 | | 15=n-4 | | 21=x-18 | | 6x+1=-8x+13 | | a+1/2=3/4 | | 150=-25x+50 | | -14j-20j+-19j+11j+-5j=14 | | 16-6x=29 | | 3x+10=2x-(4) | | (-2/7)x-5+(2/7)=5x | | 2(a-1)+5(9+2)=10(a+2)+3 | | -3(y-4y)+4=-2(5y-y)+1+16y | | 2.50•x=12.50 | | 8/3=3(e+5/3) | | 18r+5r+3r-24r=18 | | 7(x-1)+14(x+12)= | | x-8/1/4=9/8/9 | | -11t+15t-17t=13 | | 5x+x+8x=180 | | z+2z=12 | | 17v-11v=6 | | 0.24x=0.936 | | 16x-13x=18 | | 5(2y+4)-11=139 | | 16d-6d=20 | | (4x+6)+(19-4x)= | | 5/8x=6/7 | | 3/d=144 | | -n/7=-1.5 |